Decellularized Scaffolds: Concepts, Methodologies, and Applications in Cardiac Tissue Engineering and Whole-Organ Regeneration

نویسندگان

  • Sourav S. Patnaik
  • Bo Wang
  • Benjamin Weed
  • Jason A. Wertheim
  • Jun Liao
چکیده

Tissue engineering research, which aims to develop tissue/organ substitutes for treating pathological disorders and organ failures, has made many breakthroughs during the past three decades. The fi eld still faces challenges such as identifying and optimizing scaffolds that must be biodegradable, non-immunogenic, and able to provide structural, mechanical, biological supports/cues for cell adhesion, proliferation, and differentiation. Recent accomplishments in tissue decellularization provide acellular tissue-derived scaffolds that retain the nature-designed structure from the whole organ level, to the microstructural scale, down to the nanoscale. The preservation of structurally organized entities such as collagen, elastin, glycosaminoglycans, and fi bronectin enables a natural template that accommodates many tissue

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration

Background: Tissue engineering is a developing multidisciplinary and interdisciplinary field involving the use of bioartificial implants for tissue remodeling with the target for repair and enhancing tissue or organ function. Acellular nerve has been used in experimental models as a peripheral nerve substitute. The purpose of the present study was to evaluate the mechanical and histological cha...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Preparation of decellularized three dimentional scaffolds as the model for tissue engineering and their functional assessments in vitro application of blastema tissue

Tissue engineering is based on three main factors including scaffolds, cells and growth factors. Natural scaffolds derived from decellularized tissues and organs have been successfully used in tissue engineering. Decellularization studies have shown that natural scaffolds which maintaine their main structure and properties could be a suitable tool for studying cellular behaviors and preparation...

متن کامل

Tissue Engineering Scaffolds: History, Types and Construction Methods

Tissue engineering is a rapidly growing research field, potentially capable of de novo tissue and organ construction. This approach is used to improve efficiency both in the tissue and cell culture. This method is required to provide bodies in vivo three-dimensional conditions outside of the body (ex vivo). To achieve this goal, given tissue cells are cultured on the tissue engineering scaffold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013